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I: Construction 

A large number of physical quantities (thermodynamic and correlation func- 
tions, scattering amplitudes, intermolecular potentials, etc . . . .  ) can be ex- 
pressed as sums of an infinite number of multiple integrals of the following type: 

r(x,  . . . . .  x,) = f 1-I fL(xi, xj) dxn+ 1 " ' " dx,+k 

These are called Mayer graphs in statistical mechanics, Feynman graphs in 
quantum field theory, and multicenter integrals in quantum chemistry. We call 
them n-graphs here. In a preceding note [Physics Letters 62A:295 (1977)t, we 
have proposed a new estimation method which provides upper bounds for 
arbitrary n-graphs. This article is devoted to developing in detail the foundations 
of this method. As a first application, we prove that all virial coefficients of 
polar systems are finite. More generally, we show on some examples that our 
estimation method can give finite upper bounds for n-graphs occurring in the 
perturbative developments of thermodynamic functions of neutral, polar, and 
ionized gases and of Green's functions of Euclidean quantum field theories (thus 
improving Weinberg's theorem), as also in variational approximations of inter- 
molecular potentials. Our estimation method is based on the Hglder inequality 
which is an improvement over the mean value estimation method, employed by 
Riddell, Uhlenbeck, and Groeneveld, except for the hard-sphere gas, where both 
methods coincide. The method is applied so far only to individual graphs and 
not to thermodynamic functions. 

KEY WORDS: Upper bound; subgraph; covering; Holder's inequality. 

1. I N T R O D U C T I O N  

T h i s  p a p e r  is t he  f i rs t  in  a ser ies  d e v o t e d  to t he  c o n s t r u c t i o n  of  e s t i m a t e s  

( u p p e r  b o u n d s ,  in  th i s  p a p e r )  fo r  a r b i t r a r y  n - g r a p h s .  A n  n - g r a p h  is a 
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multiple integral whose integrand is a product of 2-body functions: 

r (x , , . . . ,  x.) = f I-I (1.1) 

(A more precise definition is given in Section 2.1.) 
The importance of n-graphs comes from the fact that a great number 

of physical quantities can be expressed as sums of an infinite number of 
n-graphs. This is the case for thermodynamic and transport properties of 
classical (1) and quantum ~2) systems, for amplitudes of scattering pro- 
cesses, (3) for energy levels of atoms and molecules, (4~ for atomic and 
intermolecular potentials, ~s~ etc . . . . .  In classical statistical mechanics, 
n-graphs are usually called Mayer graphs (or integrals) with n root-points. 
In quantum field theory, they are usually called Feynman graphs (or 
integrals, or amplitudes) in coordinate space and, in quantum chemistry, 
multicenter integrals. Of course, all these quantities, and in particular 
thermodynamic functions, can be studied without ever making use of 
n-graphs (see for example Ruelle's book(6~). However, n-graphs enable us 
to take into account a considerable wealth of numerical information. For 
example, approximate integral equations for the radial distribution function 
g(r) and perturbative developments with a nonideal reference gas are 
known to provide accurate values for thermodynamic functions of fluids at 
almost any density and temperature (see, for example, Ref. 7 and refer- 
ences therein). This very important and highly nontrivial information can 
be readily expressed in terms of n-graphs, whereas it does not seem possible 
to incorporate it in the other more modern approaches. 

We have been led to search for estimates of arbitrary n-graphs in 
connection with the study of thermodynamic properties of dense plasmas. 
These systems are of considerable importance, in particular in view of 
applications to controlled thermonuclear fusion. (8) But their experimental 
study is extremely difficult and measurements are scarce and relatively 
inaccurate, so that it is desirable to try to obtain information on their 
thermodynamic properties which should be quantitative and at the same 
time as rigorous as possible. In fact, this would also be interesting even for 
systems such as polar gases and dense neutral systems, although their 
thermodynamic functions are known very accurately from experiment and 
numerical simulations. Indeed, the various approximate theories that are 
used to compute these functions, as for example integral equations for g(r) 
or perturbative developments with a nonideal reference gas, are based on 
uncontrolled approximations since they are obtained (after suitable re- 
summations) by dropping the n-graphs that one does not know to compute. 
Therefore, their validity lies much more on their excellent agreement with 
computer simulations than on a sound theoretical basis. On the other han d, 
the rigorous results that have been proved for dense neutral systems are 
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mainly qualitative, since they consist in proofs of existence (for thermody- 
namic functions, phase transitions, etc . . . .  ) or in very general functional 
properties (such as positivity, continuity, convexity, etc . . . .  )(6) which 
provide hardly any information on the numerical value of thermodynamic 
functions. For polar gases, no rigorous results have been proved, up to now, 
not even the existence of thermodynamic functions. In quantum chemistry, 
a similar situation prevails: rigorous results give only proofs of existence (or 
nonexistence) for bound states and for Moller wave operators, or general 
functional properties such as analyticity in coupling constants, O) while 
numerical results are obtained by approximating variationally the wave 
functions, or by truncating their developments on various types of complete 
sets. In quantum field theory, the situation is even worse, since rigorous 
results have been proved only for some simple (low-dimensional) mod- 
els,(10) while one has to cope with the infrared and ultraviolet divergences 
to obtain quantitative results for realistic models. (3) 

To improve the situation, one can try to look for accurate estimates for 
those n-graphs that cannot be computed, rather than just to drop them, as 
was the approach of J. Groeneveld. (12) Unfortunately, in most practical 
situations, this is quite insufficient to obtain rigorous and quantitative 
results. This is particularly clear in quantum field theory and in the study of 
thermodynamic properties of plasmas, since most high-order n-graphs are 
divergent. (3'J~) This is still true even for simpler systems such as neutral 
fluids, where all n-graphs are finite, because one must further resum 
together those n-graphs that cancel approximately each other. (12) However, 
one can hope that accurate estimates for any n-graphs could permit us to 
make a first step towards rigorous and quantitative results, by indicating 
which n-graphs contribute significantly to the quantities of interest and 
which do not, and by clarifying the mechanism of cancellations that occur. 

On a more practical point of view, this could provide reasonable 
indications on the domain of validity of the various approximate theories 
through estimates of the first few neglected terms. This could also save 
large amounts of computer time by permitting us to know which n-graphs 
are negligibJe without having to compute them, or by indicating which is 
the best approximate theory for a given system, without having to perform 
costly numerical simulations. In quantum chemistry, this could help in 
choosing good test functions including explicit dependence on inter- 
electronic distances, and thus improve our physical knowledge of molecular 
structure and interatomic or intermolecular potentials by reducing consider- 
ably the number of contributing n-graphs (~3) (when making use of the 
configuration interaction method, (4) there are usually a very large number 
of n-graphs that contribute significantly, typically 10 4 to 10 6 , so that it is 
impossible to give them a precise physical meaning). 

It has been remarked by Riddell and Uhlenbeck (~4) and used exten- 
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sively by Groeneveld (t2) that one can obtain simple upper bounds for any 
given n-graph by dropping a certain number of lines until one obtains a 
"computable" n-graph (see Section 2.4). Unfortunately, this estimation 
method gives finite bounds for neutral gases only. In this article, we 
propose constructing upper bounds from an ensemble of computable sub- 
graphs, so that no line is dropped now (see the introduction to Section 3). 
These bounds have two noticeable properties that will be investigated in 
detail in later articles. The first property is that they are finite for a large 
number of n-graphs that occur in statistical mechanics, in quantum field 
theory, and in quantum chemistry. This is the case for neutral, polar, and 
ionized gases, for Euclidean fields of massive scalar particles in self- 
interaction or interacting with particles of zero mass, and even for molecu- 
lar integrals where some fL'S grow to infinity as r m at large distances. The 
second noticeable property of our upper bounds is that they have a correct 
order of magnitude for a large number of the n-graphs described above. This 
is probably the most important point about our estimation method since it 
was not at all obvious a priori that an upper bound has a correct order of 
magnitude, in the absence of any computation of a lower bound, whereas 
this is a necessary condition for an estimation method to be useful in the 
study of dense systems. 

In Sections 2.1 and 2.2, we give a precise definition of n-graphs and 
recall their graphical representation. Then, we describe various forms under 
which n-graphs can appear. In the last section, we describe the mean value 
estimation method. (12) In Sections 3.1 and 3.2, we give first the expression 
of our upper bounds in its most general form. Then, in Section 3.3, we work 
out in some detail a few examples of application, to illustrate how to obtain 
bounds by our method, and to show off some of their properties. This 
section can be read almost independently from the rest of the article, except 
for some definitions. In Section 3.4, we show that the mean value bounds 
can be regarded as a particular case of ours, and that one can always find 
by our method bounds which are strictly smaller than the mean value ones, 
except for the hard-sphere gas. In Section 3.5, we construct some particular 
types of bounds, which we call canonical. As an application, we prove that 
the virial coefficients of polar systems are finite. 

2. GENERALITIES 

2 . 1 ,  Definition of n Graphs 

n-graphs are multiple integrals of the following type: 

r ( x , , . . . , , , , ; A ) = f A  I I  L ( " , , ' g d " o + ,  - ' ' d x ~ + k  
kL~s 



Estimates of General Mayer Graphs I 597 

In (2.1), F is a graph (15) with n + k points and l simple lines L =  (i,j) 
joining the points i and j (i @j). F is called the associated graph of the 
n-graph F(x 1, . . . ,  x,;  A). The set of lines of F is denoted by ~F, and its set 
of points by GYF. The k points over which the integrations are performed 
are called field-points, and the n others are called root-points. In all the 
following, the numbers of root-points, field-points, and lines of any graph 
will be denoted, respectively, by n, k, and l. 

In the case where it is necessary to indicate explicitly that F has n 
root-points, we say that F is an n-rooted graph. If no confusion is possible 
between the graph theoretical concept and the multiple integral (2.1), F wilt 
also be called simply an n-graph. On the other hand, when we speak of an 
n-graph with a topological property (for example connected, irreducible, 
etc . . . .  ) it means an n-graph F(x I . . . . .  x,,; A) whose associated graph F 
has the given topological property. 

x i represents the coordinates required to fix the spatial location, and in 
some cases also the orientation, of particle i. More precisely, xi = r i or 
x z = (ri, ~0s), where r~ is the vector to the center of particle i from the origin 
of a laboratory coordinate system S, and ~ is the rotation which is 
necessary to make the coordinate system Sz, attached to particle i, coincide 
with S. (~6) 

The functions fL(Xi, Xj) are supposed to depend only on the relative 
coordinates of particles i and j ,  that is, they are invariant by any translation 
and rotation of the system composed of the two particles as a whole. 

Furthermore, the functions fL are assumed to be at least locally 
integrable. But, apart from these restrictions, the fL'S can be arbitrary. In 
particular, they can be all different. The product over the functions fL in 
(2.1) runs over all lines L of F. For convenience, the functions fr themselves 
will very often be called lines. For example, we will speak of the Debye- 
Hfickel line e-r/r, instead of the Deb)?e-Hfickel function. 

A is a d-dimensional domain, where the particles are free to move 
(and, as the case may be, to rotate). We will usually assume d = 3, in the 
applications, but most of our considerations are independent of the dimen- 
sionality. When the domain of integration A is infinite (i.e., is the whole 
space), it is denoted by A~. In such a case, the symbol A will be omitted 
altogether. For example, we will usually write F(x 1 . . . . .  x~) instead of 
F(x~ . . . . .  x, ;  A~). 

The symbol 

A k d X n +  l . . .  d X n +  k 

represents an integration over the k variables x~+ l . . . . .  x,+ k. Therefore, 
(2.1) is a dk- or 2dk-dimensional integral, according to whether x~ = ri, or 
x~ = (ri, ~0i). One-dimensional integrals will always be specified by the limits 
of integration. For example, f~ f(r) dr is one-dimensional whereas f f(x) dx 
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is three- or six-dimensional, in the usual space. Note that most of our 
results to be discussed are equally valid for lattice systems, although they 
will always be formulated for continuous systems. Many of them are also 
valid if we replace Lebesgue's measure dx~+l . . .  dxn+k by  any positive 
measure d~ (17) (i.e., f fdl~ >~ 0 for any positive f),  because our estimates are 
obtained by means of inequalities insensitive to such an exchange. We can 
have, for example, d /~=p(x  I . . . . .  x n + k ) d x , + l . . . d x , +  k where p is a 
positive function, involving Boltzmann factors of an external potential, 
distribution functions, absolute values of correlation functions, etc . . . . .  

In so far as we are interested only in finding estimates of one single 
n-graph at a time, we will generally assume that F(x~ . . . . .  x n; A) cannot be 
further simplified by means of certain theorems of factorization of n- 
graphs.(18) 

2.2. Graphical Representation of n Graphs 

The usual way of writing integrals such as (2.1) is very cumbersome, 
when the product is made explicit. It is well known that Mayer's way of 
writing such integrals, by means of graphs, is much more elegant and 
compact.(19,20) We describe it in this section. 

2.2.1. Representation of n Graphs with Arbitrary Lines. If the 
functions ft. are allowed to be all different, the n-graph F ( x ~ , . . . ,  x~; A) 
must be, in general, represented by a weighted graph, (2~ i.e., a graph 
where, to each line L, is associated a weight fL- Pictorially, the weight fc is 
written near the line L. For example, one has 

2 

I h 3 

= ;A2f(xl, x2)g(x2, x3)h (x3, Xl) dx 2 dx 3 (2.2) 

Here, the root-point and the field-points have been represented, as usual, as . 
white and black circles, respectively. (2~ The function f(x 1, x2) is represented 
by a line joining points 1 and 2, together with the weight f. 

Usually, in the literature, different functions are represented by differ- 
ent types of lines (see, for example, Refs. 21 and 22), for example wiggly or 
dotted lines, etc . . . . .  We will sometimes use this convention, when there 
are only two or three types of functions in the integrand of an n-graph. 
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It must be noted that making use of Mayer's notation presupposes that 
the partial integrations over the field-points can be performed in any order, 
and thus that the conditions of applicability of Fubini's theorem O7) are 
fulfilled. If these conditions are not satisfied, Mayer's notation becomes 
ambiguous. Such an ambiguity can happen in the case of polar systems, 
because the Mayer function of these systems is not absolutely integrable in 
an infinite domain. In this case, an integral such as (2.1) cannot, in general, 
be defined directly for an infinite domain, but one has to indicate precisely 
how the  domain is going to infinity. For certain n-graphs, however, and in 
particular for irreducible n-graphs, this is unnecessary, as will be shown in 
Section 3.5. 

2.2.2. Representation of n Graphs with Lines f% A very impor- 
tant class of n-graphs, in our work, consists in n-graphs where all the 
functions fL are equal to a power of the same (nonnegative) function f: 

fL  = f %  a L real positive (2.3) 

Actually, the bounds that we obtain in Section 3, for any n-graph with 
identical Mayer lines f,  are products of such n-graphs. 

In this case, the weight of line L will be simply written a L, instead of 
f '~. Furthermore, when the weight a L is equal to l, it will be omitted (this 
enables one to recover the usual Mayer convention,""" if all the aL's are 
equal to 1). This gives, for example, 

2 
3 ~  = f f~i~fT i3, dx2dx3 (2.4) 

1 3 

where we have set fq = f ( x  i, x). 
In the case where all the aL's are integers, an n-graph with lines 

ffL(x i, xj) is usually represented as a graph with % lines in parallel joining 
points i and j .  (22) We will sometimes use this representation, (23~ when it is 
more convenient than the preceding one. But it must be noted that the 
representation of n-graphs with functions f~L by means of weighted graphs 
is more general, because it allows us to represent n-graphs with lines f~L 
where a r is noninteger. 

Finally, we would like to draw attention to the trivial but very useful 
fact that the integrand of an n-graph is an (n + k)-graph. This enables us to 
represent the integrand of any n-graph by means of the preceding conven- 
tions, as the n-graph itself. For example, the integrand of the 1-graph 
K4(Xl), defined by 

K4(x') = .,A~gf12f'3f '4f23f24f34 dx2 ax3 dx4 (2.5) 
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Graphical representation of: (a) the 1-graph K4(x 0, defined by Eq. (2.5); (b) the 
4-graph K4(x I . . . . .  x4) , defined by Eq. (2.6). 

is the 4-graph 

K4(XI . . . . .  X4) = f,2f,3f14f23f24f34 (2.6) 

and these are represented graphically as indicated in Fig. 1 above. 
There is another way proposed by Feynman to represent n-graphs (see, 

for example, Ref. 24) that is slightly different from the Mayer one. 
Root-points are usually omitted, so that lines which would join a field-point 
to a root-point in the Mayer representation, are now linked only to one 
point in the Feynman representation. Such lines are said to be external. In 
Fig. 2b, we have represented with the Mayer convention one of the 
Feynman graphs of second order (24) represented in Fig. 2a. 

2.3, Various Possible Forms for n Graphs 

Very often one has to deal with quantities that do not look like 
n-graphs, but that can nevertheless be recast into the form (2.1). These 
quantities can thus be bounded by means of our estimation method, once 
this transformation has been performed. 

In the study of nonuniform systems of particles and in quantum 
chemistry, one has (or can have) to deal with multiple integrals of the 
following type(2~ : 

I '(x l . . . . .  x , ; A ) = f A k  ]-I 0i(x3 [I fL(Xi'xj) dXn+L "''dxn+k (2.7) 
iE62F LE~F 

(al (b) 

Fig. 2. The Feynman integral of second order, represented in (a) by means of the Feynman 
convention, (24~ is represented alternatively in (b) by means of the Mayer convention. (~, i9) 
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0 ~ 0 0 0 

/al Cbl 
Fig. 3. The 2-graph of nonuniform system, represented in (a) by means of a 2-rooted graph 
with weighted points, is represented alternatively in (b) by means of a 3-rooted graph, as it can 
also be considered as a 3-graph. The wiggly line represents the function O(x). 

We will call these, for convenience, n-graphs of nonuniform systems. 
Equation (2.7) can be represented by the n-rooted graph F, where each line 
L has the weight fL and each point i has the weight Oi. It is not difficult to 
see that (2.7) can also be represented as an (n + 1)-graph of a uniform 
system, provided the domain A is infinite. One has just to add a point 0 
and lines fL(x o, xi) = Oi(x~), as illustrated in Fig. 3. 

Feynman graphs in momentum space also can be cast into the form of 
n-graphs. They are defined as 

F(q 1 . . . . .  q n ) = f L ~ . r f c ( k c ) d k  , . . .dk ,~  (2.8) 

where m is the number of independent loops of F and k c is the flow of 
momentum through line L. The kL's satisfy the law of conservation of 
rnomentum at each point. We have (26) 

r ( q , , . . . ,  q.) = 17 fL(ry)dr2 . . .  dr. 
\ j = 2  ] L@EF 

(2.9) 

with 

(r/j) = (2~r)- a f f  c (kL)exp(ik L �9 r~.) dk c (2.10) fL 

and r,7 = r i - r j .  Therefore, F(q I . . . . .  %) can be viewed as the 1-graph 
F(r 0 obtained from F(r I . . . .  , rn) by adding (n - 1) lines f ( r v )  = exp(iqj. 
rlj ) between root-points 1 a n d j  ( j  = 2 . . . . .  n). This provides us also with 
an alternative way of representing Feynman graphs in momentum space. 
For example, the Feynman graph of Fig. 4a has been represented as a 
1-graph in Fig. 4b. 

In theories of liquids (7) and of ionized systems (see, for example, Refs. 
28 and 21), one can meet n-graphs with multiple lines. However, it is not 
necessary to make use of graphs of the latter type, because we have 
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to )  
.q Y ' " , -  q (b) > 

Fig. 4. (a) Standard representation of the Feynman graph in momentum space c(q) 
= f d k l d k 2 { ( k  2 + m2)(k 2 + mZ)[(kt _ k2)2 + m2][(q _ kl)2 + m2][(q _ k2)2 + m2]} -1. (b) Al- 
ternative representation of e(q), as a 1-graph. The full lines represent the function f ( r )  
= e-'~r/4~rr [or, respectively, mKl(mr)/47r2r] for a three-dimensional (respectively, four- 
dimensional) space, and the wiggly line represents the function exp(iq �9 r). 

assumed that the functions fL can be a l l  d i f f e r e n t .  An n-graph with multiple 
lines can be put into the form (2.1) simply by replacing the set of lines 
L 1 . . . . .  L m joining a given pair of points by one single line, and assigning 
to the latter the function fL, . . .  fLm" 

2.4. The Mean Value Estimation Method 

It has been remarked by Riddell and Uhlenbeck, (14) and used system- 
atically by Groeneveld, (tzb) that one can obtain simple upper bounds for 
any given n-graph F(x 1 . . . . .  x n; A) by deleting a certain number of lines 
until one obtains an n-graph y ( x l , . . . ,  xn; A) that can be computed. By 
applying the theorem of the means, (29) one obtains then the upper bound 

Jr(x....,x.;A)l < 1I M L ( A ) ~  k I I  I f L ( X i ' X j ) l d X n + l  " " " d X n + k  
L E E ( F - y )  dA L ~ y  

(2.11) 
with 

M L ( A ) =  sup ih(x/,xj) I (2.t2) 
xl,xjcA 

The upper bound (2.11) will be called a mean value bound. 
If F is a 1-rooted graph, and V is chosen to be a spanning tree T of F 

(which is always possible(3~ the upper bound (2.11) takes the following 
very simple form(lZb): 

]F(xl;A)! < 1"I sup[fc(x)! I-I ~'[fL(x)[ dx (2.13) 
L E E ( F -  T)  L E ~ T  "/ 

A spanning tree of a graph I" is a subgraph that is a tree and that contains 
all the points of r .  The upper bound (2.13) has been used by Groene- 
veld (12b) (for nonnegative potentials) and Penrose (31) (for potentials with a 
hard core) to prove that the Mayer series are absolutely convergent at small 
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activities. A more sophisticated version of (2.13) was used by Ruelle (Ref. 
6, Chap. 4) to generalize these results. 

More generally, it can be proved that any n-rooted graph contains at 
least one spanning n-tree ~.,(32~ and the theorem of the means gives the 
following upper bound: 

IF(x~ . . . . .  x. ;A)[ < H sup[fL(x)l II f[fL(x)l  dx (2.14) 
L ~ E ( F -  ~') L ~ ' r "  

This is the extension of (2.13) to an arbitrary n-graph. Equation (2.14) will 
be called the mean value bound (associated to the spanning n-tree ~-) for 
F(x 1 . . . .  , x , ;A).  Note that, if all the fc's are identical, (2.14) takes the 
same value for all possible spanning n-trees and one can thus omit any 
reference to ~-. 

For n-graphs occurring in statistical mechanics, the mean value bound 
(2.14) is finite for systems whose interaction potential 9~(x) is bounded 
below (so that exp[-flq0(x)] and I f ( x ) l ,  w i t h  f(x) = - 1, are 
bounded) and decays sufficiently rapidly at large distances (so that f lf(x)l 
dx < + m). But for polar and ionized systems, as also for most n-graphs 
occurring in quantum field theory and in quantum chemistry, the mean 
value bound (2.14) is infinite. For polar systems and for the primitive model 
of ionic solutions, flf(x)ldx is infinite because I f ( x ) l  decays at large 
distances like, respectively, r -3 and r -I. For the Debye-H/ickel and the 
Abe-Meeron models of ionized gases (11a'33) [i.e., for lines fL(r)= b(r) or 
B(r), with b ( r ) = - e e - F / r  and B(r)= e b(r~ - 1 - b ( r ) ] ,  the preceding 
difficulty disappears because the Debye screening length is incorporated 
into the fc's, so that they decay exponentially. But another difficulty arises 
in the case of plasmas, because the fL's grow now to infinity as r -  1 at small 
distances and the factor suplfL(x)l is infinite and, as a consequence, (2.14) 
is. The same type of problem occurs in Euclidean quantum field theory, 
because one has fL(r)= e-mr/4~rr in three dimensions, which grows to 
infinity as r -  1 at small distances, while in four dimensions r-~K~(mr) grows 
to infinity as r-2. The situation is even worse if the particle has zero mass 
becausefc(r ) is equal to (4~rr)-z in three dimensions, and to (2~rr) -2 in four 
dimensions, so that the difficulties arise at the same time from short and 
long distances. Both types of difficulties arise also for the multicenter 
integrals (such as exchange integrals (34~) that contain a linefL(r ) = r - l  

3. D E S C R I P T I O N  OF O U R  E S T I M A T I O N  M E T H O D  

We have seen in the preceding section that the mean value bounds are 
infinite for all n-graphs that we are interested in, except for n-graphs of 
neutral systems. 
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The underlying reason is that these bounds make use of only one 
subgraph of F, which does not convey a sufficient amount of information 
about the topological structure of F (unless the subgraph is almost as 
complicated as F itself, which must be excluded if one wants to obtain a 
computable upper bound). For example, the bound (2.14) is obtained by 
means of only one spanning n-tree of F. In other terms, one makes use only 
of the fact that F is connected, whereas the numerical value of n-graphs 
usually depends strongly on their topological structure. 2 

As it is known that the knowledge of the subgraphs of a given graph 
largely determines its topological structure, (36) we are led to ask ourselves 
whether it is possible, loosely speaking, to obtain an accurate estimate of a 
given n-graph F(x I . . . . .  x~ ;A) by making use of a set of subgraphs of F 
instead of only one. On the other hand, it is known that it may be 
unnecessary to know the complete topological structure of I" to obtain an 
accurate estimate of F(x I . . . . .  x~; A). For example, in the case of the 
Gaussian gas, the exact value of a 1-graph is determined only by the 
number of its spanning subtrees. (1) Therefore, one can expect to obtain 
relatively accurate upper bounds by means of simple subgraphs only (i,e., 
subgraphs whose associated n-graphs are computable). 

However, it must be noted that an increase in accuracy can be 
obtained only to the prejudice of generality. This means, as concerns the 
choice of subgraphs, that one single set of subgraphs cannot, in general, 
give an upper bound accurate for any distance x/j between the root-points, 
but only in a certain range of distances. Therefore, an accurate bound will 
be obtained, in general, only as the lower envelope over different sets of 
subgraphs. (37) 

Throughout this section, F(x I . . . . .  x~; A) is any given n-graph. The 
subgraphs 7i of F, which are used to obtain estimates of F(x I . . . . .  x n; A), 
are considered as fixed parameters unless stated otherwise. 

3.1. Some Preliminary Conventions 

The integrand of a given n-graph F ( X  1 . . . . .  X n ;A) is defined in (2.1), 
as a product of factors fL(xi, xj). These are allowed to change sign, for 
different values of the variables xi and xj. 

But our estimation method applies only to n-graphs whose integrands 
are products of nonnegative functions. Therefore, we will not estimate 
F ( x l , . . . , x ~ ; A )  directly,  bu t  ra ther  the n-graph ob ta ined  f rom 

2 See, for example, Ref. 35a, where a large number of 1- and 2-graphs of the Gaussian gas are 
computed; Ref. 35b; and Ref. 35c, where 1- and 2-graphs of the Lennard-Jones gas are 
computed. 
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F(xj . . . .  , x. ;  A) by replacing the fL's by their absolute values. This new 
n-graph will be denoted by [Fl(x I . . . . .  x~; A): 

Irl(x, . . . . .  x . ' J ) =  'L r 

The n-graph F(x I . . . . .  x , ;A)  which we are interested in and the 
quantity which is really estimated, namely, I F [ ( x t , . . . ,  x , ;  A) are related by 
the inequality 

[r(x l . . . .  , x.; A)I < Irl(x, . . . . .  x.; A) (3.2) 

When no confusion is possible, however, we will usually keep the same 
notation F(xj . . . . .  x, ;A) to denote the right-hand side of (3.1), even if the 
fL'S are not positive everywhere. Moreover, in the graphical representation 
of n-graphs, we will usually make no distinction between the functions f 
and If], and will represent these by the same line. But it must be borne in 
mind that an inequality such as 

really means 

3/2 2 

(~ .1 

f[f(x)l dx] f f(xl.)i(x..)i(.,l)dX.dX. ~[ ,i. ' (3.4) 

In the statement of theorems, no mention will be made of the interme- 
diate n-graph [F](x 1 . . . .  , x . ;  A), for reasons of simplicity, and the absolute 
value signs, for the fL'S, will be omitted in the proofs. 

3.2. Formulation of the Method 

To obtain an estimate of a given n-graph F(x 1 . . . . .  x. ;  A), not com- 
putable by the usual methods, we look for computable upper bounds. To 
find upper bounds, we proceed in three steps: 

(S1) The graph F is decomposed into a union of c line-subgraphs 7z: 
C 

r = U ~i (3.5) 
i = l  

($2) The integrand of F(x 1 . . . . .  x. ;  A) is decomposed into a product 
of e factors, determined by the yi's: 

L ~ f i F  i = 1  L@s 
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($3) H61der's inequality (29) is applied to the preceding product, to 
decouple the factors: 

c c Yi 

v i =  1 i = 1  ~ J  / 

The numbers Zic and .Yi will be defined more precisely in Theorem 3,1 
below. 

Definition 3.1. A set of subgraphs of I" satisfying the condition (3.5) 
will be called a covering of F. 

We recall that (3.5) means 

9 r  = (3 .5a)  
i 

~F = U ~-t,i (3.5b) 
i 

where 62F and ~F denote, respectively, the sets of points and lines of r .  As 
the ,h's are assumed to be line-subgraphs (i.e., G7~ = 62F, Vi), the first 
condition is trivially satisfied, and condition (3.5) can be replaced simply 
by (3.5b). 

By applying the three steps S1-$3 to F(x 1 . . . . .  xn; A), we obtain the 
following theorem: 

Theorem 3.1. Let I ' ( X l , . . . ,  xn;A ) be a given n-graph. To each 
covering of F by c line-subgraphs 7i, one can associate the following infinite 
set of upper bounds: 

I r ( x ,  . . . .  , "n; a)l < fI r (k  1i iZLI z'Ly' 'dXn+l''" dXn+k (3.8) 
i = 1  L ")A L E ~ T  i 

where the ZiL and y~ are nonnegative real numbers whose sum over i is 
equal to unity: 

c 

~ ,  Zic = 1, VL ~ tip (3.9a) 
i = 1  

ziL/> 0 if L E ~75 (3.9b) 

ZiL = 0 if L ~ s (3.9c) 

_,Yi  = 1 (3.10a) 
i = 1  

Yi >/0 (3.10b) 

Proof. To obtain (3.8), we have first to find a covering of F (step S1), 
"i.e., a set of line-subgraphs satisfying condition (3.5b). For any given graph, 
there always exists at least one covering (take 7t = F) but there are usually 
a large number of different ones. Let us choose one of them. 
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In a second step, we have to associate a function F~ to each subgraph 
Yi, in such a manner that the product of all the F,'s gives back the integrand 
of F. To this end let us associate, to each line L of "/i, a part of the function 
fL, i.e., f[,L, where Zg c is any real number. Thus, to the subgraph ~,i, we 
associate in this manner the factor F, = l-IL~v,f~,< If we set zi/" = 0 when 
the line L of F does not belong to yi, this factor F,. can be written as 

F i = I - I f [  '~ 
L E E F  

Then, if we impose moreover the condition that the F]s have a product 
equal to the integrand of F, we must have the identity 

fl I7 rI fli,  H IL (3.11  
i = I  L E a F  L E f f F i = I  L ~ F  

and thus the Zic must satisfy the constraints (3.9a). 
Inequality (3.8) is then obtained by applying H61der's inequality to the 

product of the c factors of the left-hand side of (3.11). As this inequality is 
valid for any set of positive numbers satisfying the constraint (3.10a) we see 
that there is an infinity of Yi satisfying this constraint. Therefore, our 
estimation method gives us an infinite number of different upper bounds, 
for the fixed n-graph F(xl, . . . ,  x , ;  A), and for each covering of F. 

Up to now, we have only imposed the condition that the zgc to be real 
numbers satisfying the conditions (3.9a) and (3.9c). We will nevertheless 
assume from now on, in this article, that all the Z~L are nonnegative. The 
reason is that, when fc  decays to zero at large distances, one usually wants 
that f{,L decays also to zero, because this is a necessary condition for this 
latter function to be integrable in an infinite volume. Therefore, one has to 
assume Z~L >>- O, in this case. Furthermore, when fL does not decay to zero at 
large distances, the only L p norm which is finite in an infinite volume is the 
sup norm, i.e.,p = oz. This implies that one must h a v e  ZiLYi -1 = + ~ ,  and 
thus one still has zic > 0 because ys > 0. 

Nevertheless, one can be led, in some problems, to release the restric- 
tion Z~L > 0, VL. This is in particular the case if we want to control the 
volume dependence of n-graphs with Coulomb lines C(r) = e x p ( - L / r )  - 

1 .(38) 

It is not forbidden that one or several yi be identical to F. This can 
enable one, for example, to bound n-graphs of realistic neutral systems by 
means of n-graphs of the hard-sphere gas, as will be shown elsewhere. 

H61der's inequality, which is a generalization of the well-known 
Cauchy-Schwartz inequality, is usually written a s  (29) 

. e, x l / 1  q 
f F iF2 . . .  Fmdl~<(JFr, dlx ) " . ( f  FP22d#O I/p2... ( f  F:~dtz) lip" (3.7a) 
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for any set of positive numbers Px, P2 . . . . .  p,~ satisfying the condition 
~.pi  - 1 =  1, any nonnegative functions F l, F2,. . . . .  F m, and any positive 
i 

measure d/~. Here we have used it withpi = Yi 1 for the constraint (3.10a) to 
be linear in the variables yi. 

The n-graph F(x l . . . . .  x,;  A) being fixed, the mean value estimation 
method associates, to a given subgraph of I', a unique upper bound, given 
by (2.11). Here, to a given covering of F, we associate an infinite number of 
upper bounds, given by (3.8). Therefore, an important problem which arises 
now, and which did not arise with the mean value method, is to find [for 
the  fixed n-graph F(x I . . . . .  xn; A) and a given covering of F] the best 
upper bound of type (3.8). In other words, one has to minimize the 
right-hand side of (3.8) over the variables y~ and ziL, subject to the 
constraints (3.9) and (3.10). All these constraints are linear (this is why we 
have used y~ in preference to the more usual Pc). On the other hand, the 
right-hand side of (3.8) (called the objective function) is usually a nonlinear 
function of the variables yi and 2iL. Therefore, the problem of finding the 
best upper bound of type (3.8) can be viewed as a nonlinear programming 
problem, with a nonlinear objective function and linear constraints. (39~ This 
problem can be solved, at least in principle, by iterative techniques. (39~ 
Note, however, that the best upper bound is obtained only after an infinite 
number of steps. It will be shown elsewhere (3v) that, in some cases, it is 
possible to reduce the nonlinear programming problem into a linear one 
(i.e., one has to minimize a linear function), that can be solved in a finite 
number of steps by the simplex algorithm. (4~ 

3.3. Examples of Application 

Before going on any further with general considerations, we are first 
going to illustrate our procedure with three examples. We first consider the 
1-graph K4(xl), which occurs in the fourth virial coefficient of the pres- 
sureJ 1) K4(xl) is defined by the equality 

K4(Xl) = fA3f12f13f14f23fa4f34dx2dx3dx 4 (3.12a) 

Pictorially, this is written as 

K 4 ( x , )  = X (3.12b) 
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We will make use of two different coverings of K 4 (see Definition 3.1 in 
Section 3.2). The first one is a set of spanning trees (for a definition, cf. 
Section 2.4), and the second one a set of spanning cycles (a cycle is a 
connected graph where all points are of degree 2). Finally, we will study 
some 2-graphs that occur in quantum chemistry and in quantum field 
theory. 

3.3.1. Upper Bound for g4(x1) by Means of Spanning Trees. If 
we rewrite the integrand of K4(xl) as the product of the two functions 
F = f12f23f34 and G = fe4f41 f~3, and apply the Cauchy-Schwartz inequality 
to the product FG, we find 

\1/2 ,,1/2 
]g4(x1)l ~ ( ;  f?2f23f234dx2dx3dx4) X ( ;  f24f21f?3dx2dx3dx4) (3.13) 

Pictorially, the right-hand side of (3.13) reads 

f ~ f 

3 3 

\ 

4 

i o 

1 2 

1 " 1  
2 - 

4 

(3.14) 

where a line represents the function f2(x). We see that the two graphs of 
(3.14) are spanning trees. Therefore, (3.13) can be simplified to give 

]K4(x1) I ~[ f lf(x)i2dx] 3= -T-44 (3.15) 

Before discussing the properties of this upper bound, let us first 
analyze the way it has been obtained. The essential step is the factorization 
of the integrand into the product FG. It is particularly useful to view the 
functions F and G as 4-graphs, and to rewrite this faetorization pictorially, 
by making use of the graphical representation of 4-graphs: 

4 3 4 3 4 3 

= X (3.16) 

�9 
1 2 1 2 1 2 

This shows clearly that the factorization of the integrand of K4(XI) into the 
product FG can be obtained by first choosing a covering of K 4 by two trees, 
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and then regrouping the factors f~j of the integrand in a way consistent with 
the covering. 

The upper bound T 4 that we have obtained in (3.15) is very simple, as 
simple as the mean value bound (2.13), which is 

IK4(x,) I .< M3(flf(x)ldx)3= M3r4 (3.17) 

One can see immediately, on this example, the main advantages of our 
estimation method over the mean value one. First, the two important types 
of thermodynamic systems which cannot be treated by the mean value 
method, namely, the polar systems (because of long-range behavior) and 
the Debye-Htickel system (because of short-range behavior) can be studied 
by our method, because K4(x 0 is now bounded by a finite quantity. For the 
Debye-Hfickel model of plasmas, one has f(r) = e-  r~ r (in appropriate unit 
of length), and thus ~ = [4~rf~r2(e-r/r)2dr] 3= 8qr 3. The exact value is 
K4(xl)~0.188 • 8~r 3 and hence, our upper bound T 4 overestimates the 
exact value by a factor 5.3. For polar systems the new lines f2 decay like 
r -6, and thus they are integrable in an infinite volume. 

Note that the Debye-Htickel  line e - r / r  can also be interpreted as the 
propagator of a scalar particle of unit mass in three dimensions (see Section 
2.3). T 4 gives thus for the particular 1-graph K4(x 0 an improvement over 
the Weinberg theorem, (41) which tells us only that K 4 ( x 1 )  is finite because 
its superficial divergence d(K4) -- 3 d -  12 is negative for d = 3 (as also the 
superficial divergence of all its subgraphs). On the contrary, T 4 is infi- 
nite for a four-dimensional  Eucl idean scalar field, because T 4 ---= 

(f~r3[r-lKl(r)12dr} 3 diverges logarithmically at small distances. This is 
consistent with the Weinberg theorem, since d(K4) is equal to zero for 
d = 4, indicating actually a logarithmic divergence for K4(XI) .  The possibil- 
ity of improving the Weinberg theorem for arbitrary n-graphs will be 
investigated in later articles. 

Let us now turn to the case of neutral gases, for which the mean value 
bounds are finite. For the Gaussian gas, one has T 4 = 4.42 • 10-2 and 
M3T4 = T 4 = 1. As the exact value is K4(x1) = 1.55 • 10 -2, we see that our 
bound T 4 overestimates K 4 by a factor of 2.83 whereas the mean value 
bound T 4 overestimates K 4 by a factor of 64. More generally, for most 
neutral systems, T 4 is an improvement over the mean value bound M3T4 . 
The only important exception is the hard sphere gas, where the bounds 
M3T4 and T 4 coincide. This can be seen by integrating the inequality 

f22f213f214 < M3f12f13f14 (3.18) 

We obtain a strict inequality, T 4 < M3T4, for any f(x) except if If(x) I = M 
for any x such that f(x)  =/: 0. 
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3.3.2. Upper Bound for Kn(x 0 by Means of Spanning Cycles. 
We have seen that the three steps of our estimation method arise quite 
naturally, in the preceding example. We are now going to see in detail how 
our estimation method works, in a more complicated case. We want to 
prove the inequality 

2 

3/2 

3 
= C 4 (3.19) 

3/2 

Note that we have by our conventions 

- -  ['r162 d X C4 = j J l 2  ./23 j34 ./41 2d• (3.20) 

Therefore, (3.19) gives a very simple upper bound because, for f(r)  radially 
symmetric, C'-~ can be recast into the form (42) 

--C4 = l--k- s  2 (3.21a) 

with 

g( k) = 4~rs ~lf(r)[3/2(r/ k)sin kr dr (3.21 b) 

The first step to obtain (3.19) consists in finding a covering of the 
graph associated to K 4. A simple one is the following: 

(3.22) 

Then, in a second step, we associate to this covering a factorization of the 
integrand of K 4. The constraints (3.9) can be satisfied by taking xir = �89 As 
the integrand of K4(x 0 is identical to the 4-graph K4(x~ , . . . ,  x4), it can be 
represented in the following way: 

3 4 

(3.23a) 
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This is simply a pictorial way of writing the identity 

f12ft3f14f23f24f34 = FIF2F3 

with 

(3.23b) 

is equal to (see Appendix A): 

~{ [(3/2)  2 + y 2 ]  ' / 2 -  3/2  
C---~ 32~r4f0 (3/2)2 + y2 

dy _ 64vr 4 
y2 27 

( 1 6 -  5~) (3.27) 

This bound overestimates K 4 by 45%, and thus is an improvement over T 4. 
For the four-dimensional Euclidean scalar field, C 4 is of course infinite 
since the 1-graph K 4 itself is infinite. 

For a polar gas, the mean value upper bound M 2C 4 is finite, as will be 
shown in Section 3.5.3., whereas M 3 T 4 was infinite. However, in this case, 
our upper bound C--~ is an improvement over the mean value bound M 2C 4. 

F 1 = (f12f23f34f4,) V2 

F 2 = (f13f32f24f41) l/2 

F 3 = (f12f24f43f31) 1/2 

The last step $3 consists in applying H61der's inequality to the product 
of the right-hand side of (3.23). If we choose Yl = Y2 --- Y3 = �89 we obtain 

.(xl)= f F1F2F3.<.(f (3.24) 

where we have set d/x = dx 2 dx 3 dx 4. By noticing that the three integrals in 
the right-hand side are equal, we get 

]K4(x ,)[ <, f f~/2f3/:f34/2f2(2 dx 2 dx 3 dx a (3.25) 

which is precisely (3.19). 
Our upper bound C 4 is obtained by making use of spanning cycles as 

line-subgraphs. Note that we can also obtain a mean value bound by taking 
a spanning cycle as subgraph ,/(see Section 2.4). We find 

IK4(x,) I < M2fA3f12f23f34f4,dx2dx3dx4= M2C4 (3.26) 

with M = supx If(x)[, as usual. 
For the Debye-Hfickel system (and, also, for a self-interacting Euclid- 

ean three-dimensional scalar field), the mean value upper bound M 2C 4 is 
still infinite, as M3T4 was, because M = + oo, whereas our upper bound ~44 
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This can be seen by integrating the inequality 

f 3 /2r /2r /2~3 / 2 
12 .]23 .]34 J41 • M2f12f23f34f41 (3.28) 

For neutral systems, for example for a Lennard-Jones gas, C 4 is still 
an improvement o v e r  M2C4 for the same reason as above. The only 
exception is the hard-sphere gas. For the Gaussian gas, one finds C 4 = 
2.02 • 10 - 2  and C 4 = 12.5 • 10 -2. As the exact result is K 4 = 1.56 • 10 -2, 
we see that our bound C 4 overestimates K 4 by 29%, whereas the mean value 
bound C 4 overestimates K 4 by 800%. 

We could have covered the graph K 4 with two cycles only, for example 
with the first two cycles of the right-hand side of (3.22). We have used the 
covering (3.2) because it enables us to find the best upper bound for K4(x0, 
among the infinite set of upper bounds of type (3.8) that can be obtained 
by making use of spanning cycles as subgraphs, as will be shown in a 
subsequent article. The reason why one can obtain the best upper bound 
with (3.22) is that each line of K 4 belongs to the same number of subgraphs, 
more precisely to two cycles. We say that the covering (3.22) of K 4 is 
uniform. 

We have seen, in two particular cases (the Debye-H/ickel  system and 
the Gaussian gas), that our bound C4, obtained by means of spanning 
cycles, is an improvement over T 4, which is obtained by means of spanning 
trees. We prove in Corollary 3.5 below that this result holds true for any 
system. In other words, one has C---~ <T44 for any line f(x). 

As the 1-graph K 4 can be estimated (computed) with a high accuracy 
by the usual methods, (35b~ our estimates T44 and ~44 are not very useful by 
themselves. Their usefulness comes rather from the fact that they enable us 
to evaluate the accuracy of our estimation method for "uncomputable" 
n-graphs by extrapolation. Indeed, as T 4 and C 4 have a correct order of 
magnitude for the Debye-Hfickel,  Gaussian, and Lennard-Jones (43) sys- 
tems, this can reasonably be expected to hold true for a certain number of 
n-graphs, more complicated than K4, and completely out of range of 
present-day computers (for example, K 6 or/s This information is all the 

m o r e  important as, very often, we are unable to find lower bounds 
sufficiently accurate to ensure that the order of magnitude of our bounds is 
actually correct. Therefore, the extrapolated accuracy is the only informa- 
tion available. 

3.3.3. Upper Bounds for 2-Graphs Occurring in Quantum Chem- 
istry and Quantum Field Theory. The second example we are going to 
study is the 2-graph e(r12), defined by 

= (fl(r13)fz(r3e)f3(r24)f4(r41)fs(r34)dr3 dr 4 s  (3.2%) j - -  
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for various types of lines f .  This 2-graph is represented graphically as 

3 

c(r,2) = 1 2 (3.29b) 

4 
Several bounds have been given for this 2-graph in Ref. 37, Fig. 2. We 
reproduce two of them in Fig. 5 below, together with the coverings they 
come from. 

Let  us first assume that f l  = f2 = f3 = f4 = e - r  and fs = r - l  (see Fig. 
5b), and let us call q(r l2  ) the corresponding 2-graph. q( r la  ) is called an 
exchange integral, in quantum chemistry, (5'34) and represents a contribu- 
tion to the potential of interaction of two hydrogen atoms in their ground 
states, in the Born -Oppenhe imer  and L C A O - M O  (linear combinat ion of 
atomic orbi ta ls-molecular  orbitals) approximations.  (5) The  root-points 1 
and 2 represent the two nuclei, and the field-points the two electrons. The  
two bounds given in Fig. 5 are finite. Let  us call them A l(rl2) (Fig. 5d) and 
Bl(rl2 ) (Fig. 5e), respectively. The  first one is equal (up to a constant  

o<I> c<I> 
[d) D [e) x o" 2 

Fig. 5. The 2-graph (a) is bounded by the 2-graphs (d) and (e). These bounds are obtained, 
respectively, from the coverings (f) and (g). For 2-graphs whose lines are not all identical, such 
as (b) and (c), the bounds (d) and (e) must be modified suitably. 
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numerical  factor) to a Coulomb repulsion integral, and thus can be com- 
puted analyt ical ly)  We have 

with 

q( r l2  ) ~< A,(r ,2 ) (Y30a) 

=~r2[ 1 r ( 1 - ~ r  3 6 1 r3 )e -2 r  I (3.30b) A (r) - + + 4 r2 + 

Note  that one can obtain a finite mean  value bound  by deleting the lines f l  
and f3 in (3.29). By setting r i = 2R i in this bound,  we obtain 

el(r~2 ) ~< 25A ~(r~2/2 ) (3.30c) 

However,  (3.30c) is much less accurate than (3.30a), as can be seen in Table 
I below. The second bound  Bl(rt2 ) is also finite, as can be seen from Eq. 
(B.4) in Appendix  B. 

Let us now assume that the full and wiggly lines of Fig. 5b represent 
the propagators  of two interacting Euclidean scalar fields, whose masses are 
equal, respectively, to unity and to zero, and let us call r [respectively, 
E3(rl2)] the corresponding 2-graph for a three-dimensional  space (respec- 
tively, four-dimensional).  For  e2(r12), the two bounds m2(r12 ) and B2(r12 ) 
represented by the graphs (d) and (e) of Fig. 5, are finite. This can be seen 
immediately on the simplified expressions given in Appendix  B, Eqs. (B.2) 
and (B.5). For  e3(r12), the bound  A3(r12 ) is infinite but  B3(r12 ) is finite. This 
can be seen most  simply by means of the double inequality e - r / r  < Kl(r ) 
< r -1  (see Appendix  C) and of the Riesz composi t ion formula,  (48} which 
can be written as 

(r~3~rf2e dr 3 = k.  B r~ 2 (~ + e) (3.3 l a) 
d 

Table I. Comparison of the Exact Value of the Exchange Integral q(q2) to Its 
Bounds (3.30b) and (3.30c), for Various Values of rz2 a 

i 

rl2 0 1 1.5 2 2.5 3 

~-2r ) 0.625 0.437 0.297 0.184 0.106 0.059 
~r-2A j(r~2 ) 0.625 0.555 0.490 0.426 0.368 0.320 

~-225A 1(�89 20 19.4 18.6 17.7 16.7 15.7 
i 

aThe exact values are taken from Hirschfelder et al., Ref. 34, p. 1106. We have 
restricted ourselves to rl2 < 3 because the bound (3.30b) [and, afortiori, (Y30c)] is 
accurate only at small distances. O7) 

3 See Ref. 44; the Coulomb repulsion integral is denoted as [lSa[ lSb] in this article. One has 
Al(r )= ~2• 
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where 

provided 

k~# = rd/2 F ( � 8 9  ~ ) )F ( �89189  +/3 - d))  (3.31b) 
B ) F ( a  - + p ) )  

0 < a < d ,  0 < / 3 < d ,  and d < ~ + f i < 2 d  (3.31c) 

For A3(r), the inequality e- f i r  < Kl(r ) gives 

( e -2r13 1 e-2r42dr3dr4<A3(r121 (3.321 
J r43 r324 r42 

and A3(r12 ) is infinite since the left-hand side is. 
The second inequality Kl(r ) < r-1 gives 

B3(r12 ) <(fr~3r~3r~3dr3dr4• 2/3 (3.33) 

By making use of (3.31), we find 

- -4/3;2/3  -2  - (3.34) B3(r12 ) < K3 3 K32 r12 = ,~-4r|22 

This shows that the upper bound B3(r ) is finite everywhere, except perhaps 
at small distances. From inequality e-r//r < Kl(r ) and from homogeneity 
considerations (take R i = r~lri as new variables), we can see that the 
2-graph c3(rl? ) itself diverges as r -2 at small distances. This result shows 
that the upper bound B3(r ) diverges at small distances, not because our 
estimation method is insufficiently accurate, but because the 2-graph itself 
diverges. Furthermore, combined to (3.34), this result shows that our 
estimation method is in fact sufficiently accurate to give exactly the degree 
of the divergence. 

Note that ~r4r~ 2 is also an upper bound for the 2-graph of Fig. 5c, 
which represents a massive particle emitting and absorbing successively two 
massless particles, as also for all the 2-graphs obtained in substituting either 
r-lKl(r) or r -2 to each ~ in e(rl2 ) [and in particular for the 2-graph (a), 
where all lines are equal to r-2]. 

3.4. Comparison of Our Estimation Method to the One of 
Groeneveld Based on the Mean Value Theorem 

3.4.1. The Mean Value Estimation Method, as a Particular Case 
of Our Estimation Method. In the preceding section, we have checked 
on particular examples that our estimation method can give better bounds 
than the mean value one. We are now going to show that, for any given 
n-graph, our estimation method can give bounds at least as good as the 
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mean value one, because this latter estimation method can be viewed as a 
particular case of ours. 

To prove this, let us cover F with the line-subgraphs ~, and F - ~ ,  
[where ~, is the same line-subgraph which is used in (2.14)]. Equation (3.8) 
gives, for any finite domain A and any Yl and Y2, 

7 r(X 1 . . . . .  xn ;A ) ~< _.f) f Y ? t d X n + l  . . . dxn+ k 

• I-I f { ~ ' d x , + , . . ,  dx,+ k (3.35) 
kLE~y 

Both integrals, in the right-hand side of (3.35), are finite for a n y y  I a n d y  2 if 
all the fZs  are assumed to be bounded in A. Therefore, if we let Y2 go to l 
(and thusy  1 go to 0), the second factor of the right-hand side of (3.35) goes 
to y(x t . . . . .  xn;A). The first one goes (29) to l i m y _ , o  Vmy' • sup I I f  L 
= 1I sup fL, where m denotes the number  of components of F - Y which 
do not contain any root-point, and where the product runs over all lines of 
s - y). Therefore, one recovers effectively (2.14), in the limit y j--> 0. Note  
that, in the case where the domain is infinite, one cannot recover directly 
(2.14) from (3.8). One must first go back to a finite volume, make use of 
(3.35), and then let A go to infinity in both sides of (3.35). 

In conclusion, we have shown that the best of our bounds of type (3.8), 
over the xiL and Yi, is at least as good as (2.14), for any given n-graph. 

If some f / ' s  don ' t  decay to zero at large distances, for example if they 
are equal to a Boltzmann factor exp(-flqo), the sup norm, Ilf][~, is the only 
L p norm, I]flIp, which is finite when the domain A is infinite. Therefore, in 
this case, we can in a first step apply the mean value estimation method to 
I '(x 1, . . . ,  x , ;  A), to get rid of these fL. The graph ~,, which occurs in (2.14), 
is made out of all the lines L whose associated functions fL decay to zero at 
large distances (we do not require these functions to be absolutely integra- 
ble because, as we show in Section 3.5, an n-graph can be absolutely 
integrable even if all the fL's individually are not  absolutely integrable). 
Then, in a second step, one can apply our estimation method to 
~,(x l, . . . ,  x , ;A) .  The results of this section show that we can equivalently 
perform both steps together, provided we choose 71 to be F - y ,  and 
72 . . . . .  ~'c to be a covering of y, and provided moreover that the limit 
Yl -'> 0 is taken before the limit A ~ A~.  

3.4.2. A Sufficient Condition for Our Bounds to be Strictly 
Smaller than the Mean Value Ones. In Section 3.4.1, we have shown 
that our estimation method can give, for any n-graph, upper bounds at least 
as good as those of the mean value type. In Section 3.3 we have also 
obtained, for the particular 1-graph K4(xl), bounds of type (3.8) which were 
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strictly smaller than the bounds of mean value type for almost all systems. 
We are now going to generalize this latter result to any n-graph. 

Of course, we must compare what is comparable. This means that our 
bound (3.8) cannot be, in general, compared to the mean value bound 
(2.14) if the subgraph 7 used in (2.14) is different from the subgraphs 
"/1,72 . . . . .  7c used in (3.8). We cannot either compare these two bounds, 
even if 3, is identical to one of the 7~'s, say 7 = 7~. 

On the other hand, our bound (3.8) can be compared to a certain 
mean of the bounds of mean value type, B~, obtained by substituting to 7, 
in (2.14), successively 71,72 . . . .  ,7c: 

Bi= H ML~I, I"I fLdXn+l'''dXn+k ( 3 . 3 6 )  
L ~ E(F-  yi) dA L E ~7i 

Let us denote by Bg the quantity in brackets, in the right-hand side of (3.8): 

fa ~ fL'LY" dx"+~ " " dx"+k (3.37) 
B/t~-  kL Yi 

We are going to prove the following corollary. 

Corollary 3,2. Let us assume that z~Ly ~-1 >/ 1 for any i and L, and 
that at least one Z~Ly ~- ~ is strictly larger than 1. One has, for any set of 
functions fL, 

15I (ff//)Y' < 15I (Bi) y' (3.38) 
i=1 i=1  

If moreover the fL'S are piecewise continuous, a sufficient condition for the 
strict inequality to hold true is that each fL vanishes only at a finite number 
of points. A sufficient condition for the equality to hold true is that all 
functions fL, such that zmy~-l> 1 for some i, are proportional to a 
characteristic set function: 

fc(X) = McXL(X ) (3.39) 

with 

X2(x) = XL(x) for any x (3.40) 

Proof. As all Zicy i- 1 are assumed to be larger than or equal to 1, we 
have 

f;/ly, ~(x) < M(Z "y'-'- 1)fL(X ) (3.41) 

There is equality if zicyi - l =  1. When ziLy ~-~ > 1, there can be equality 
between the two members of (3.41) if and only if one has either fL(x ) = M L 
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or fL(x) = 0. This means that ME IlL(X) is equal to 0 or 1 for any x, and 
hence is a characteristic set function (M c is nonnull, because otherwise, 
fL(X) would be identical to zero for any x). 

From (3.41), we find 

B~ (3.42) 
\ Le~vi L@f.(I'- y,) ] 

As we have ziL = 0 if L ~ ~(I' - ~,i) [because of condition (3.9c)], we can 
replace ML -1 by ME '~'-'- 1 in the second product inside the brackets. 

Therefore, (3.42) can be rewritten as 

B-~. ~<[ LEerII ML("~'-'- ')IBi (3.43) 

By raising both members of (3.43) to the power y~, and making the product 
over all values of i, we find 

I~I (B,)Y'<[ ]5I I I  M~z'L-Yi) ] • I-[ (Bi ) yi (3.44) 
i = 1  i = 1  L E e F  i = 1  

By inverting the order of the products inside the brackets, and noticing that 
we have ~ =  l(ziL --y~) = 0 because of (3.9a) and (3.10a), we obtain finally 
the inequality (3.38). 

For the strict inequality to hold true in (3.38), it is necessary and 
sufficient that there is a strict inequality in (3.41) for one B i (provided one 
has B i g: 0 for any i). Let us then choose i such that ZiLYi -1 ) 1 for some L. 
As the integrands of B i and Bi are products of piecewise continuous 
functions, the equality can hold true in (3.42) if and only if the integrands 
are equal everywhere, except on a set of measure zero: 

I-I f{'~'-'= I-[ M(J"~7'-l)fL (3.45) 
LEVy; LEE?,, 

If the fc's are supposed not to vanish except at a finite number of points, 
(3.45) can be satisfied only if fL(x) = M L, for any x (except at the points 
where fc vanishes, where L is the line such that ziry i- l > 1). If we exclude 
this trivial case, where some fL would be constant almost everywhere, we 
see that (3.45) cannot be satisfied. Therefore, the strict inequality holds true 
in (3.38). 

Finally, if all the functions fL, such that ziLy i- 1 > 1 for some i are 
characteristic set functions, we see immediately that (3.45) is satisfied for 
any i, and thus the equality holds true in (3.38). 

If the fc's are equal either to the Mayer function of a given potential 
q0(x), or to the Boltzmann factor exp[ -  flq~(x)], there is a strict inequality in 
(3.38), in particular for the Lennard-Jones and soft-sphere potentials. On 
the other hand, both members of (3.38) are equal, for the hard-sphere 
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potential. They are also equal if all the functions fL are equal to the Mayer 
function f(x)  of a given potential ~(x), constant in a certain domain of 
interparticles distances, q0(x) -- e, and null elsewhere. Note that c must be 
positive, for such a system to have finite thermodynamic functions. (6) 
Finally, the equality holds true also for a square well potential if all the J)~ 
are equal to the Mayer function f,  and if moreover the reduced temperature 
T* is equal to 1.44 [i.e., ( ln2)-l] .  

From the discussion just following inequality (3.41) one would be 
tempted to say that both sides of (3.38) are equal if and only if all functions 
fL such that Xic yi-1 > 1 for some i, are proportional to a characteristic set 
function. This is nevertheless false, as can be seen in the following example. 
Ree and Hoover (49) have exhibited an infinite set of 1-graphs, the in- 
tegrands of which are products of characteristic set functions x c ( r ) ,  these 
products being identical to zero, I-[ L XL = 0. Therefore, if we multiply each 
XL by an arbitrary positive function gL, we have a set of 1-graphs, whose 
integrands I I L ( g L X L )  are still identical to zero, but whose lines fL = gcXL 
are not characteristic functions. Let us now choose one of these graphs, say 
F 1. We can construct a graph F which contains I" l as subgraph, and extract 
from I' a covering by two line-subgraphs ~,~ and Y2, where 3q contains F~. 
By making use of Corollary 3.3 below, we obtain a set of B~ with all xsLy  ~- 1 

larger than or equal to 1. But, as the integrands of B 1 and B 1 contain a 
factor 1-ILXL=-O, we see that both sides of (3.38) are equal  (to zero), 
although the lines fc = gLXL of I" are not characteristic set functions. 

3.5. The Canonical Upper Bounds 

In the preceding section, we have shown that our estimation method 
can improve the mean value one, provided certain conditions are fulfilled. 
Here, we are going to associate, to each covering of F, a particular upper 
bound which satisfies these conditions. As an application, we prove that the 
virial coefficients of polar systems are finite (this cannot be proved by the 
mean value method). 

3.5.1. Definition of the Canonical Upper Bounds. To each cov~ 
ering of F, one can associate a particular upper bound, by taking all the Yi 
to be equal: 

Yl = Y2 . . . . .  Yc = c l (3.46a) 

and by attributing the same piece of fL to each of the subgraphs which 
contain the line L: 

zi L = X L  l if ZiL ~ 0 (3.46b) 
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where X L is equal to the number of subgraphs which contain the line L. 
This gives the following corollary: 

Corollary 3.3. Let 3'1,72, �9 �9 �9 ~'c be a covering of F. To this cover- 
ing, one can associate the following upper bound: 

�9 . If l d x o + ,  . . .  IF(x,, . ,  x~; A)[ < I-I cxz~ dx~+ k (3.47) 
i=l LdAkL~Eyi 

with 

cX L i >1 1 VL (3.48) 

Equation (3.47) will be called the canonical upper bound (associated to the 
given covering). Moreover, if at least one 7i is a proper subgraph of F, there 
is at least one line L 0 such that 

CXLo > 1 (3.49) 

Proof. The upper bound (3.47) is obtained by substituting (3.46a) 
and (3.46b) into (3.8). As we have clearly X L < e from the definition of Xc, 
inequality (3.48) follows. Finally, if at least one 7i, say 71, is a proper 
subgraph of F, there is at least one line of F, say L 0, which does not belong 
to 7r  Therefore, we have XLo < C, which gives (3.49). 

The bound (3.47) is interesting because of its great simplicity, of 
course, but also because it can be expected to be a good bound for small 
distances x,j between the root-points. This point will be made clearer in 
later articles. For the time being, let us just say that (3.47) gives even the 
best upper bound [over the set of XiL and Yi subject to the constraints (3.9) 
and (3.10)] that one can obtain by making use of n-trees as subgraphs, 
provided the covering of F by the n-trees YpY2 . . . . .  Yc is uniform. (37) 
Finally, (3.47) is also interesting because of its application to polar systems, 
as we are going to see. 

3.5.2. A Particular Canonical Upper Bound for Irreducible 
n-Graphs 

Corollary 3.4. Let F(x~ . . . . .  x, ;  A) be an irreducible n-graph with l 
lines, and 71,72 . . . .  , Yt the set of subgraphs of F with ( l - 1 )  lines, 
obtained by deleting successively each line of ]?. The canonical upper 
bound associated to this covering is 

[r(x, . . .  x,,; A)] < ]-I IZLI z/<,-') dxn+~. . ,  dxn+k (3.50) 
i=1 kL Ti 
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Corollary 3.5. The 1-cycle Cf, . . . . .  f.,(x~;A) and the 2-chain 
CT ...... /.,(x 1, x2; A), formed out of m lines fl . . . . .  fm, are bounded by 

In the particular case where all the f are identical and A is infinite, the 
1-cycle is independent of x~, and it has been denoted C m in this case. We 
have 

C,, <~(;I f lm/(m-O) m-1 (3.52) 

By replacing f by f3/2 in both members of (3.52) and taking m = 4, we 
obtain C 4 < T  4 for any f, as was announced in Section 4.3.2. More gener- 
ally, inequality (3.52) can be used to compare bounds obtained by means of 
cycles, to bounds obtained by means of trees, for any given n-graph. 

The upper bound (3.52) can be put into the form 

where 1 is the number of lines of the graph, and k its number of field- 
points. It will be shown elsewhere (3v) that this formula holds true for any 
n-graph F(x] . . . . .  x , ;A)  provided a certain condition on F is satisfied. 

3.5.3. Application of the Canonical Upper Bounds to Polar 
Systems. 

Corollary 3.6. Any irreducible n-graph, the lines of which are all 
equal to the Mayer function of a given potential q0(x), satisfies the inequal- 
ity 

with 

M = sup If(x)[ (3.55) 
x 

For a polar system, the upper bound (3.54) is finite, and thus the virial 
coefficients are finite too. 

Proof. In irreducible 1-graphs, each field point is linked to the 
root-point by at least two point-disjoint chains (i.e., chains without points 
in common). In irreducible n-graphs (n > 2), each field-point is linked to at 
least two root-points by such chains. Thus, in both cases, the deletion of 
one line gives an n-rooted graph which is connected. By deleting succes- 
sively each line of F, we get a set of I connected n-rooted subgraphs 7i 
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which cover F. Therefore, the mean value bound for the quantity in 
brackets, in the right-hand side of (3.50), is equal to 

with MI = sup lfl l/(t-1). Equation (3.54) is then a consequence of the 
identity sup(l f l  z/(t- ')) = (sup I/l) ' / ( t -  l) 

For a polar system, ]f(x)] t/(t- 1) decays at large distances like r -(3+~), 
with c~ = 3 / ( l  - 1), and thus is integrable in an infinite volume. This shows 
that the upper bound (3.54) is finite, whereas the mean value upper bound 
(2.14) was infinite because flf(x)l  dx = + or. 

We have shown that irreducible n-graphs are absolutely convergent in 
A~ for polar systems. But for some models of ionized systems, where the 
lines decay like r-~, this is no more true and one can encounter irreducible 
n-graphs which are not absolutely convergent in an infinite volume. This is 
the case, for example, for all 1-graphs such that l ~< 3k. But, on the other 
hand, one can also encounter n-graphs which are absolutely integrable in 
an infinite volume, provided one has l > 3k. (38) 

Corollary 3.6 can be generalized to the case where the functions fc  are 
different, provided that there exists an irreducible n-rooted subgraph y 
having the following two properties: (i) The functions IfL] l / ( t -  1) are abso- 
lutely integrable in an infinite domain, for any L belonging to s (ii) The 
functions ]fL(x)[ are bounded for any x, and for any L. To prove this, we 
bound F(x t . . . .  , xn; A), in a first step, by means of y(x 1 . . . . .  xn; A), by 
making use of (2.14). Then, we apply Corollary 3.4 to 7(x I . . . . .  x~;A). 
Finally, we proceed along the lines of Corollary 3.6. 

It is important to note, however, that if one wants to extend to polar 
systems the results which have been proved by Groeneveld and Penrose in 
the case of neutral systems, ( 12b. 30) one cannot use the preceding generaliza- 
tion because the 1-graphs which one has to bound have only a tree of 
Mayer lines. (3~ Therefore, one must proceed along different lines. 

From Corollary 3.6, we see that any connected n-graph which does not 
contain any block of field-points reduced to a single line, is absolutely 
integrable in A~. On the contrary, a connected n-graph which contains a 
block of field-points reduced to a line, is not absolutely integrable in A~, 
because one has f l f]  dx = + oe. We have thus obtained a necessary and 
sufficient condition for any connected n-graph to be absolutely integrable 
in A~. This could be useful to investigate the convergence properties of 
Mayer series, in the case of polar systems. 

As was noted in Section 2.2.1, Corollary 3.6 implies that irreducible 
n-graphs of polar systems can be represented unambiguously by means of 
graphs, without specifying how the domain A goes to infinity. 
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APPENDIX A 

In this appendix, we compute the upper bound C 4 of the 1-graph/<4, 
for the Debye-Hfickel system. We have 

G = 32~4[X(~) - I(O)] (A.l) 

with 
2 

and a = 3/2. This integral is convergent. To compute it, we can perform 
the square. We have then to compute three indefinite integrals. We find 

I(y) = - OL-2y +-1 -- (o~ 2 --{- y 2 ) - l y  -I  

+ 2~-3[ (~2 + yZ)'/2y-, + y(~2 + 9)-'/z ] 

-- 30~-2,F(OL 2 "1- y2 )  - l - z  ~c~-3 arctan(y/cQ (A.3) 

The first three terms have no limit individually, as y goes to zero, but their 
sum is asymptotically equal to 2a-~v. We have thus I(0) = 0. Finally, we 
obtain immediately I (oo)=  0r _ 5  qr), and hence (3.27). 

APPENDIX B 

In this appendix, we reexpress the bounds appearing in section 3.3.3 as 
one-dimensional integrals. We have 

Affr12)= f e -2~'~ 1 e-2r"2 dr3dr4 (B.l) G & 

Since the Fourier transforms of the functions r-2e -at and r-1 are equal, (4a) 
respectively to 4 ~rk-1 arctan(k/2) and 4~rk-:, we find 

Affr,2) = 32v ( ~ (  1 k 2 dk arctan ~ ) sin kr 
r Jo ~ 

(B.2) 
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This integral exists, since it is absolutely convergent for small values of k 
(the integrand goes to r/4) and semiconvergent for large values of k, 
thanks to the second theorem of the means (47) [the function k - I ( k - l a r c  - 
t a n k / 2 )  2 decreases monotonically, and [f~osinkrdkl < or]. 

The bounds B~(r12 ) and B2(rl2 ) are equal to 

Bi(r12)=[f fi(r,3)r~43/~(ra2)dr3dr4f fi(r,3)fi(r32)dr3] 2/3 (B.3) 

with fl(r)  = e -  3r/2 and f2(r) = r-3/2e 3r/2. The Fourier transforms of fl(r), 
fz(r) and r -3/2 are equal, (46) respectively, to 12~r(a2 + k2) 2, (2v)3/2k -1 • 
[a 2 + k2] -1/2 • [(a 2 + k2) 1/2 - a] V2 and (2rr)3/2k-~, with a = 3/2.  There- 
fore, we obtain 

132(2~r)s/23r \ 4 3  ~/" 1 ]2/3 -3/2~[ 3 r 2+  sinkr dk B,(r) = e ~ r + l ) ) ~ f ~ ( 9 + k 2 )  4 

(B.4) 

[4(27r) 7/2 o~ (a 2+ k2) ' / 2 -  a s Bz(r) = sin kr dk 

(a 2 + k2) ~/2 - a krdk] 2/3 •163 sin (B.S) 
J 

Both integrals in the right-hand side of (B.5) are absolutely convergent 
at large distances, as also at small distances since limk_~ok-Z[(a 2 + k2) 1/2 - 
a] = (2a)-1. 

A P P E N D I X  C 

We want to prove the inequality 

e - r / r  < K,(r) < 1/r (C.1) 

To prove this, we use the following integral representation of Kl(r) (45) : 

K, (r) = f0 ~e -"Ch'cht dt (C.2) 

From the inequality sht < cht, we obtain the double inequality 

foo~ K,(r) < fo~ (C.3) 

As cht grows monotonically from 1 to oo and sht from 0 to 0% as t grows 
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from 0 to ~ ,  (C.4) can be rewritten as 

fl~e -ru du% K,(r) < fore -ru du 

whence inequality (C. 1) 

Lavaud 

(C.4) 
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